Comparison of gaseous microemboli counts in arterial, simultaneous and venous heat exchange with a hollow fiber membrane oxygenator.

نویسندگان

  • R G Sutton
  • J B Riley
  • J H Merrill
چکیده

Potential sources of gaseous microemboli during cardiopulmonary bypass are varied. However, it is known that membrane oxygenators generate fewer gaseous microemboli than bubble oxygenators and that bubblers cannot utilize arterial heat exchange without generating significant gaseous microemboli during rewarming. A membrane oxygenator utilizing simultaneous gas and heat exchange raises the concern that concurrent gas and heat exchange would result in a higher production of gaseous microemboli compared to conventional venous heat exchange devices. This in vitro study compared venous, simultaneous, arterial and control (venous) heat exchanger gaseous microemboli counts during rewarming. No significant difference was found between the four heat exchangers when comparing inlet and outlet gaseous microemboli counts. This in vitro study suggests that there is no difference in gaseous microemboli generation when varying the position of the heat exchanger in the extracorporeal circuit incorporating a microporous membrane oxygenator.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Normobaric versus Hypobaric Oxygenation on Gaseous Microemboli Removal in a Diffusion Membrane Oxygenator: An In Vitro Comparison.

Gaseous microemboli (GME) are an abnormal physiological occurrence during cardiopulmonary bypass and extracorporeal membrane oxygenation (ECMO). Several studies have correlated negative sequelae with exposure to increased amounts of GME. Hypobaric oxygenation is effective at eliminating GME in hollow-fiber microporous membrane oxygenators. However, hollow-fiber diffusion membrane oxygenators, w...

متن کامل

Evaluation of Quadrox-i adult hollow fiber oxygenator with integrated arterial filter.

Gaseous microemboli (GME) remain a challenge for cardiopulmonary bypass procedures in adult as well as pediatric cardiac surgery patients. The present study tested the effectiveness of a new adult membrane oxygenator in models both with and without an integrated arterial filter to evaluate GME trapping capability and determine membrane pressure drops at various flow rates and temperatures. The ...

متن کامل

A clinical evaluation of the Terumo Capiox SX18R hollow fiber oxygenator.

The Terumo Capiox SX18R is a commercially available, low prime, reverse phase, hollow fiber membrane oxygenator. The oxygenator consists of a 1.8 m2 microporous polypropylene hollow fiber bundle, a 2200 cm2 tubular stainless steel heat exchanger, and an open hard shell venous reservoir with integral cardiotomy filter. The Terumo Capiox SX18R oxygenator was evaluated to determine its clinical ox...

متن کامل

Gaseous microemboli in a pediatric bypass circuit with an unprimed venous line: an in vitro study.

Miniaturizing cardiopulmonary bypass (CPB) circuits to reduce hemodilution and allogenic blood product administration is common in cardiac surgery. One major concern associated with smaller CPB circuits is a possible increase in gaseous microemboli (GME) sent to the cerebral vasculature, which is exacerbated by vacuum-assisted venous drainage (VAVD). The use of VAVD has increased with smaller v...

متن کامل

The effectiveness of low-prime cardiopulmonary bypass circuits at removing gaseous emboli.

During extracorporeal circulation, the patient's blood is siphoned into the extracorporeal circuit (ECC) by gravity or may be assisted kinetically or by vacuum. In all instances, negative pressure is generated in the venous line, which can cause entrainment of air into the ECC at the cannulation site. The typical ECC uses a venous reservoir, membrane oxygenator, and arterial line filter, which ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of extra-corporeal technology

دوره 26 2  شماره 

صفحات  -

تاریخ انتشار 1994